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Abstract— In this paper, we consider a parametrically driven nanoscale device modelled by discrete nonlinear Schrodinger equation. To 
determine the stability of fundamental dark solitons, analytical and numerical calculations are performed. We show that a parametric driving 
can change the stability of dark solitons. Stability windows of fundamental dark solitons are presented and stability approximations are 
derived using perturbation theory, with numerical results. 
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1 INTRODUCTION                                                                     
E consider a nanoelectromechanical system (NEMS) 
governed by a parametrically driven discrete nonlinear 
Schrodinger (PDNLS) equation 

2
2 nn n n n ni C αΨ = − ∆ Ψ + Ψ Ψ −ΩΨ − Ψ   (1) 

where )(tnn Ψ≡Ψ  is a real-valued wave function and ‘n’ is 
the lattice site index. The overdot and the overline denote the 
time derivative and the complex conjugation, respectively. C  
is the coupling constant between two adjacent sites, 

2 1 1 2n n n n+ −∆ Ψ = Ψ +Ψ − Ψ  is the one-dimensional (1D) discrete 
Laplacian, α  is the parametric driving coefficient with fre-
quency Ω. Parametrically driven electromechanical resonators 
have been discussed in Ref. [1, 2]. Discrete bright soliton type 
systems have been discussed before e.g. in Ref. [3-7]. In 
undriven case Eq. (1) reduces to the standard discrete nonline-
ar Schrodinger (DNLS) equation, which appears in many ap-
plications [8]. The same equation also applies to the study of 
discrete modulational instability in parametrically driven op-
tical lattice [9]. The long bosonic Josephsen junction and BEC 
trapped Optical lattices are also studied using same equation 
[10, 11, 12]. 

In this paper we examine the condition for stability of fun-
damental onsite dark soliton in defocusing PDNLSE. 

For small C, the perturbation theory is used, followed by 
numerical computations in MATLAB.  

2  ANALYTICAL SETUP AND PERTURBATIVE RESULTS 
Stationary solution of system (1) in the form of n nXΨ = , 
where nX  is a time independent and real valued wave func-
tion, nX  satisfies the stationary equation 

 

3
2 0n n n nC X X X Xα− ∆ + −Ω − =   (2) 

To examine the stability of nX , we introduce the lineariza-
tion ansatz 

n n nX YδΨ = +  
where 1δ << , and substitute this in to Eq.(1), it yield the fol-
lowing linearization equation at ( )O δ : 

2 2

2 2n n n n n n n niY C Y X Y X Y Y Yα= − ∆ + + −Ω −  (3) 
writing n n nY A iB= + , and linearizing in δ , we find 
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and  
2

2( ) ( )nM C C X α
+

= − ∆ + −Ω +  
2

2( ) (3 )nM C C X α
+

= − ∆ + −Ω −  
Let the eigenvalues of N be denoted by id, which implies 

that nX  is stable if Im(d)=0. Since Eq.(5) is linear, we can elim-
inate one of ‘eigenvectors’, for instance nB , then we obtain the 
following eigenvalue problem 

2( ) ( ) n nM C M C d A A
+ −

= = Λ   (6) 

3 ANALYTICAL CALCULATION 
In the uncoupled limit 0C = , we denote the exact solutions of 
(2) by (0 )

n nX X= , in which each (0 )

nX  must take one of three 
values given by 0, α± Ω + . 

Following Ref.[1], using a perturbative expansion, the dark 
soliton solutions are obtained as 
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and its eigenvalues for small C  are given by 
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2 2 24 ( )C O CαΛ = Ω − − Ω +    (8) 
The instability of onsite discrete dark soliton is due to the 

collision of the smallest eigenvalue (8) with an eigenvalue bi-
furcating from lower and upper edge of continuous spectrum, 
for small and large α , respectively. Equating these quantities, 
we find the critical value of α  as a function of the coupling 
constant C  i.e 

1 2 20.4 1.6 0.2 9 28 16cr C C Cα = − Ω − + Ω − Ω −  (9) 

      2 2 4cr Cα = Ω − Ω               (10) 
Both 1

crα  and 2
crα , give approximate boundaries of the in-

stability region in ( , )C α plane. 

4 COMPARISON WITH NUMERICAL CALCULATION 
Using Newton-Raphson method, we have numerically solved 
the static equation (2), and analyzed the stability of the numer-
ical solution by solving the eigenvalue problem (4). We con-
sider 0.9Ω =  in the model. 

Figure 1 provides a full description of the dynamics of the 
parametrically driven DNLS model regarding the intervels of 
stability/instability of the model. Analytical predictionbility 
range as obtained by the conditions of collision of the phase 
mode eigenfrequency with the continuous spectrum from Eqs. 
(9)-(10). 

Figure 2,3 illustrate the typical instability scenario for dif-
ferent values of parametric drives α  and coupling constant C . 
Where the panel-a present the structure of just before the colli-
sion (stable), whereas the penal-b represents just after the col-
lision (unstable). 
 

 
 
 

 
(Panel-a) 

 
(Panel-b) 

 
Fig. 2. The eigenvalue structure of onsite dark soliton for  0.4α =  and 

0.01C =  (panel-a), as well as 0.028C =  (panel-b).  
 

 

 

 

 
Fig. 1. The stability-instability region in the two parameter space Cα − . 
The solid lower and upper lines are the analytical approximations of 
Eqs. (9) and (10). Lower and upper dash-dotted lines are their respec-
tive numerical approximations.  
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Fig. 2. The eigenvalue structure of onsite dark soliton for  0.03α =  and 

0.008C =  (panel-a), as well as 0.03C =  (panel-b).  
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 5 CONCLUSIONS 
In this paper, we have considered a parametricallydriven 

Nano Electro Mechanical System, which is modeled by DNLS. 
The stability of fundamental onsite dark solitons are deter-
mined using perturbative analysis, which is followed by Nu-
merical Computations in MATLAB. We have shown that the 
presence of parametric driving can change the stability of gov-
erned model. It destabilizes the onsite dark soliton. We have 
considered the frequency of parametric drive as 0.9Ω = , 
which is smaller than that in Ref[1]. The result is a downward 
shift in C α−  graph (Fig.1), which is expected from analysis. 
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